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a b s t r a c t

We model the Raplee Ridge monocline in southwest Utah, where Airborne Laser Swath Mapping (ALSM)
topographic data define the geometry of exposed marker layers within this fold. The spatial extent of five
surfaces were mapped using the ALSM data, elevations were extracted from the topography, and points
on these surfaces were used to infer the underlying fault geometry and remote strain conditions. First,
we compare elevations extracted from the ALSM data to the publicly available National Elevation Dataset
10-m DEM (Digital Elevation Model; NED-10) and 30-m DEM (NED-30). While the spatial resolution of
the NED datasets was too coarse to locate the surfaces accurately, the elevations extracted at points
spaced w50 m apart from each mapped surface yield similar values to the ALSM data. Next, we used
a Boundary Element Model (BEM) to infer the geometry of the underlying fault and the remote strain
tensor that is most consistent with the deformation recorded by strata exposed within the fold. Using
a Bayesian sampling method, we assess the uncertainties within, and covariation between, the fault
geometric parameters and remote strain tensor inferred using the model. We apply these methods to the
Raplee Ridge monocline, and find that the resolution and precision of the ALSM data are unnecessary for
inferring the fault geometry and remote strain tensor using our approach. However, the ALSM data were
necessary for the mapping of the spatial distribution of surface outcrops. Our models considered two
scenarios: one in which fault geometry and remote strains were inferred using a single deformed
stratum, and another in which all mapped strata were used in the inversion. Modeled elevations match
those observed to within a root-mean-squared error of 16–18 m, and show little bias with position along
the fold. Both single- and multilayer inversions image a fault that is broadly constrained to be w4.5–
14 km in down-dip height, 13–30 km in along-strike width, with a tip-line 2.0–9.5 km below the surface
at the time of deformation. Poisson’s ratio was not well resolved by the inversion. The idealized elastic
model is oversimplified when considering the complicated layered nature of this fold, however, it
provides a good fit to the observations. Thus, comparable surface displacements may be produced with
a variety of rheological models, so independent constraints on factors such as the fault geometry may be
required to ascertain the appropriate rheology of the fold.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The well-exposed Raplee Ridge monocline in southeastern Utah
(Fig. 1) is a north-south oriented fold about 14 km long and 2 km
wide (O’Sullivan, 1965; Ziony, 1966). The San Juan River has incised
through the fold in the last several Ma (Wolkowinsky and Granger,
2004), exposing a thick sedimentary package (Jentgen, 1977; Ziony,
1966). Folding within the ridge likely occurred during the Laramide
phase of deformation during latest Mesozoic and early Cenozoic
time (Gregory and Moore, 1931). Many folds within the Colorado
ll rights reserved.
Plateau were formed due to reactivation of high-angle structures
that likely date back as far as the Precambrian (Bump, 2003; Davis,
1978, 1999; Kelley, 1955). While no fault is exposed at the Raplee
Ridge monocline and no subsurface information reveals the fault
geometry, the presence of dipping beds along its west side, along
with the fact that this fold is similar to many other Laramide folds in
the Colorado Plateau for which faults are exposed (Tindall and
Davis, 1999) or inferred (Bump, 2003; Bump et al., 1997; Davis,
1999;, Kelley, 1955) implies that this fold was formed above a east-
dipping high-angle reverse fault.

As in the case of the Raplee Ridge monocline, faults that drive
folding observed at the surface are often unexposed. As a result,
both forward and inverse models have been used to relate fold form
to the geometry of underlying faults. The simplest of these models
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Fig. 1. (A) Shaded relief map (color-coded for elevation), showing the location of Raplee monocline in southwestern Utah. Upper right inset shows Four Corners area; location of
Fig. 2 noted in location map. (B) Arial photograph of Raplee Ridge showing displacement of strata. Photo looks to the north. Fold is w500 m in vertical relief.
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are kinematic models that assume no volume change of geologic
units during folding-related fault slip in order to infer the subsur-
face geometry of unexposed faults and the fold evolution (All-
mendinger and Shaw, 2000; Bump, 2003; Cardozo, 2008; Erslev,
1991; Jamison, 1987; Mitra, 1990; Suppe, 1985). While this
geometric approach may violate the stress equilibrium equations,
compatibility of stresses and strains within the crust, and the
constitutive stress–strain relations of the rock, it nonetheless has
the appeal that computational burden is low when calculating fault
and fold geometry (e.g., Allmendinger, 1998; Cardozo, 2008), and
that fold forms observed in the field can be coarsely reproduced.
However, with the advent of high-speed computers, we now have
the ability to create forward models that satisfy the constitutive
stress–strain relations, stress–strain compatibility, and the equa-
tions of static equilibrium in the crust (e.g., Casey and Butler, 2004;
Guiton et al., 2003). Such forward models have been developed for
materials that are linear elastic (Bellahsen et al., 2006; Fiore et al.,
2007; Shamir and Eyal, 1995), linear viscous (Johnson and Johnson,
2001, 2002), nonlinear elastoplastic with frictional faults (Sanz
et al., 2007), and nonlinear viscous with frictional faults and
bedding surfaces (Sanz et al., 2008). Each of these models assumes
that the crust is in a state of static stress equilibrium, and so the
component of the momentum budget that arises from accelera-
tions (e.g., individual earthquake rupture dynamics) is small. Some
of these models have been used to infer the kinematics of slip on
prescribed faults (Bürgmann et al., 2005; Maerten et al., 2005), or
loading and fault geometry in two dimensions (Johnson and
Johnson, 2002). Thus, the ability to use a fully mechanical approach
that infers fault geometry and loading conditions from surface
observations now exists (Mynatt et al., 2007).

The National Center for Airborne Laser Mapping (NCALM)
collected ALSM topographic data funded by the National Science
Foundation Collaborations in Mathematics and Geosciences (NSF-
CMG) program that images the deformed strata at Raplee Ridge
(Fig. 2a). These data provide a high precision, dense array of points
on patches of marker bedding surfaces that we use to infer the
subsurface geometry of the fault that may be responsible for the
monocline. Our previous work at Raplee Ridge (Mynatt et al., 2007)
combined the ALSM data with an elastic boundary element model
to infer the geometry of the fault. The present study builds on this
previous work by jointly estimating Poisson’s ratio of the modeled
fold, and implementing a scheme that uses multiple layers and
observations of bedding-plane rotations to constrain the fold
geometry.

In this contribution, we compare the ALSM data to other more
commonly available topographic data (Fig. 2b and c) to determine
what spatial resolution is required to infer the subsurface geometry
of faults based on the displacements of exposed folded strata. In
addition, we expand the previously described method to use
a series of layers within the fold in order to better constrain the
geometry of the underlying structure. We use a Markov–Chain
Monte Carlo method to provide an estimate of the variation within,
and covariation between, model estimates of fault geometry
parameters that produce deformation similar to that recorded
within the fold.

2. Study area

Raplee Ridge monocline (Fig. 1) is located in southeast Utah, east
of the town of Mexican Hat Mynatt et al., 2009. This structure lies
west of the laterally continuous Comb Ridge monocline, which
strikes N-S to NNE-SSW in this area (Kelley, 1955; Fig. 1, Ziony,
1966). The orientation of folded strata exposed within the Comb
Ridge monocline is consistent with slip along an underlying W- to
WNW-dipping fault that strikes parallel to the trend of the
monocline. Unlike this more extensive structure, which can be
traced for 10s of kilometers along its strike, Raplee Ridge is spatially
restricted to w15 km along its N-S strike. No subsurface data in this
area image the relationship between the Raplee Ridge monocline
and structures that accommodate the displacement along the
Comb Ridge monocline in the subsurface; however, it is plausible
that a fault that drives folding seen in Raplee Ridge serves as
a backthrust to the larger Comb Ridge fault. If this were the case, the
thrust fault geometry may shoal as the deeper basement backthrust
advances into the mechanically weak strata above, as has been seen
in other reactivated basement-involved structures (e.g., Narr and
Suppe, 1994).

The strata exposed within Raplee Ridge include the Pennsylva-
nian Paradox Formation to Permian Halgaito Tongue, but here we
focus on the Rico Formation, which consists of alternating lime-
stones, siltstones, and sandstones that record a general trend of
marine regression up-section. The occurrence of marine incursions
during this generally regressional sequence has resulted in the
deposition of five limey sandstone and sandy limestone layers
encased within shales and siltstones that currently provide well-
exposed stratigraphic markers whose surfaces reveal the geometry
of the fold (Fig. 3). These marker layers are folded into the w500 m
high doubly plunging monocline. Sedimentary layers within the
monocline’s forelimb dip up to 40� to the west, in contrast to those
gently dipping (<5�) to the east within the backlimb (Figs. 1 and 2).

Exposure of different stratigraphic markers varies depending on
the depth of incision into the fold. The surface of the highest
stratigraphic level used as part of this study, the McKim limestone,
is widely exposed throughout the fold due to the fact that erosion



Fig. 2. The topography of Raplee Ridge, as imaged by the (a) 1-m ALSM-derived data, (b) NED-10 data, and (c), NED-30 data. All elevation maps have the same elevation and map-
view scale. (d) Shaded relief map showing the mapped extent of the McKim surface used in single-layer inversions. The location of (x,y,z) points extracted and used to compare
accuracy of different datasets are shown as red dots. Note that the mapped surface constrains the shape of the fold at a particular stratigraphic depth.
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has stripped virtually all of the overlying Halgaito Tongue from this
surface over much of the fold (Fig. 3). Within basins incised into the
fold, four additional marker layers define the fold’s geometry
including, from top to bottom, the Goodrich, Shafer, Mendenhall,
and Unnamed limestones (Mynatt et al., 2009). Within these
basins, individual bedding surfaces can be identified and mapped;
however, the exposure of these four lower units is often restricted
to limited areas of the fold hinge that have been excavated by
erosion. Overlying the McKim limestone, exposure of the Halgaito
Tounge shale along the peripheral edges and away from the fold
constrains the extent of the fold by defining those areas that are less
deformed.

Throughout the Colorado Plateau, similar monoclines are often
associated with Laramide contraction that occurred during late
Mesozoic through early Cenozoic time (Davis, 1979; Kelley, 1955;
Reches, 1978; Reches and Johnson, 1978). Where exposed, at least
some of these structures appear to result from movement along
high-angle basement faults that may have first experienced motion
as early as the Proterozoic (e.g., Davis, 1999, and references therein;
Huntoon, 1993; Huntoon and Sears, 1975; Kelley, 1955). In some



Fig. 3. Shaded relief map showing the spatial distribution of the five bedding-plane surfaces exhumed within the fold. From stratigraphically highest to lowest, they are the McKim,
Goodrich, Shafer, Mendenhall, and Unnamed surfaces. Location of structural sections are noted in geologic map. Structural sections have no vertical exaggeration. Arrows in the
stratigraphic column note the stratigraphic position of the top of each of the bedding surfaces shown in the geologic map.
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cases, the reverse faulting that deformed Colorado Plateau strata
into monoclinal geometries were subsequently reactivated during
Basin and Range extension in the Miocene (e.g., Huntoon and Sears,
1975). However, where this can be shown to be the case, normal-
sense reactivation of the basement faults caused them to propagate
through the strata above. Thus, Laramide contractional deformation
is often accommodated within the Paleozoic and Mesozoic section
by warping of the strata, whereas later extensional deformation
typically resulted in discrete offset of these units (Huntoon and
Sears, 1975). At Raplee Ridge, detailed field observations show that
there are no faults that link with the underlying basement struc-
tures; thus, we infer that the deflected strata within the monocline
result from Laramide contraction, rather than Miocene extension.
Consequently, the western monoclinal forelimb implies that an
underlying reverse fault likely dips towards the east. By analogy with
other basement-involved structures, it is possible that the geometry
of the fault steepens as it enters the basement rocks upon which the
folded strata were deposited (e.g., Narr and Suppe, 1994).

3. Airborne Laser Swath Mapping (ALSM) data

On February 24, 2005, the National Center for Airborne Laser
Mapping (NCALM) collected topographic data from the Raplee
Ridge area using an Optech 25 kHz pulsed laser range finding
system and associated Inertial Measurement Unit (IMU) that is
corrected for drift using kinematic GPS observations taken onboard
the aircraft. The acquisition was performed to build a fold-scale
geometric model to compare outcrop-scale measurements of
fracture characteristics to fold geometry (Mynatt et al., 2009).
The combination of acquisition frequency and low elevation flight
plan provided several laser range positions per square meter from
which a 1-m Digital Elevation Model (DEM) was produced by
kriging interpolation (Isaaks, 1989). The vegetation at the site
proved sufficiently sparse to obviate the need for spatial filtering to
remove its contribution from the DEM (Fig. 2). From this 1-m DEM,
a shaded relief map of the fold was produced, which was used in
the field to map the extent of the uppermost surface of the five
stratigraphic markers throughout the fold (Figs. 2d and 3).

The markers range in thickness as follows (Ziony, 1966):
Unnamed, 2–8 m; Mendenhall, 6–11 m; Shafer, 1–6 m; Goodrich,
2–7 m; and McKim, 3–6 m. Accurate mapping of the top surfaces of
these thin layers required the 1-m DEM. Once the marker surfaces
were identified and mapped on the georeferenced images, (x,y,z)
points that defined the geometry of each of the surfaces were
extracted from the DEM. In some cases, the topographic surfaces
that appear to define the tops of the mapped strata have been
modified by up to 1 m by surface processes. In addition, erosion
along the up-slope edges of the surfaces has distributed a small
amount of colluvium (typically less than 1 m thick) onto the tops of
the exposed strata. Thus, we estimate the precision of elevation
estimates to be w 2–5 m (Mynatt et al., 2007).

More than 100,000 points were extracted from the mapped
stratigraphic surfaces. Consideration of this large number of points
would render intractable the fold-scale inversion described below.



Fig. 4. Color-coded, shaded relief DEM of the center of Raplee Ridge, showing the detailed differences in resolution between the datasets. (a) The ALSM-derived DEM, (b) the NED-
10 DEM, and (c) the NED-30 DEM. Color and map-view scales for all panels are identical.
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For this reason, we decimated the dataset to provide (x,y,z) points
for each of the surfaces that were spaced no less than 50 m apart.
We compared the ALSM measurements of these extracted points to
more commonly available datasets to assess the precision of data
for use in this study.

Specifically, we compared equivalent z values at the selected
(x,y) points to those extracted from the National Elevation Dataset
(NED) 30-m resolution DEM and 10-m resolution DEM. The poor
spatial resolution of both NED datasets relative to the ALSM data
would prohibit accurate identification and mapping of the extent of
the different stratigraphic marker surfaces within the fold (Fig. 4),
although low elevation air photos that were precisely georefer-
enced might be employed for such a purpose. However, despite the
coarse resolution of both NED datasets, their extracted elevation
values compared favorably with those obtained from the deci-
mated ALSM dataset (Fig. 5a,c). To provide a quantitative metric of
the differences between these three datasets, we calculated the
residual elevation by subtracting the elevation value at each (x,y)
point used in this study for both NED datasets from the elevation at
corresponding (x,y) locations in the ALSM dataset (Fig. 5b,d).
Elevations from both NED datasets showed little, if any bias in
elevation relative to the ALSM data. The mean residual value
equaled 1.6 m and �1.1 m for the NED 30-m and 10-m datasets,
respectively, relative to the ALSM dataset. Variation between these
two datasets was modest: standard deviation in residuals from NED
30-m and 10-m datasets was 4.1 and 4.2 m, respectively. However,
as described below, the average misfit for our best-fit inversions
was several times this variation. Thus, given the uncertainties in the
fold-wide inferences produced by modeling, elevations extracted
using the NED 30-m and NED 10-m datasets should supply
adequate precision when using these data as inputs to the fault
geometry inversions described below. This conclusion pre-
supposes that geologic mapping can provide accurate locations of
the stratigraphic marker surfaces.

4. Methods

4.1. Inversion methods

The two major goals of this study were to provide a detailed
and accurate depiction of the continuous structural geometry of
Raplee Ridge monocline that could be compared to outcrop-scale
measurements of fracture characteristics (Mynatt et al., 2009),
and to infer the geometry of and remote strain conditions acting
along the reverse fault underlying the monocline. The finite extent
of the Raplee Ridge monocline necessitated the use of a three-
dimensional model that could capture the along-strike variations in
fault and fold geometry (e.g., Figs.1 and 2). Some three-dimensional
N
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Fig. 6. Schematic model setup, showing the definition of each of the parameters used to de
shown in the figure are defined in text. (A) Model parameters, (B) deformed model configu
models that conserve the area and length of strata exist (Gratier
et al., 1991); however, as outlined above, such methods do not take
advantage of the constraints provided by a full mechanical analysis.
Likewise, methods that use a complete mechanical analysis to relate
displacements to the geometry of underlying strata assume two-
dimensional plane-strain conditions (e.g., Cooke and Pollard, 1997;
Johnson and Johnson, 2002; Sanz et al., 2007; Sanz et al., 2008), and
thus cannot adequately capture the three-dimensional nature of the
Raplee Ridge monocline. Some recent studies point the way towards
estimating fault geometry and loading using forward three-
dimensional elastic models (e.g., Bellahsen et al., 2006; Fiore et al.,
2007). We build on these types of studies by using formal nonlinear
inversion methods to estimate fault geometry and loading condi-
tions as initiated by Mynatt et al. (2007).

In this study, we used the three-dimensional Boundary Element
Model (BEM) Poly3D to relate the displacement of strata to
underlying fault geometry and loading conditions (Maerten and
Maerten, 2008; Maerten et al., 2006; Tamagawa and Pollard, 2008;
Thomas, 1993). This BEM idealizes the rheology of Earth’s brittle
upper crust as homogeneous, isotropic, and linear elastic. Trian-
gular planar elements are embedded into this elastic material to
represent parts of faults and fractures along which displacement
within the material is discontinuous. Slip or opening along these
elements is driven either by specifying the displacement disconti-
nuity directly, allowing the elements to slip under a prescribed
remote loading (assuming zero friction acting along the fault
surface elements), specifying a stress drop along the elements, or
any combination of these boundary conditions for the normal and
two shear components. For example, one may specify mixed-mode
boundary conditions in which shear tractions acting across an
element induce slip parallel to the element, while prescribing
a zero displacement condition perpendicular to the element (no
opening/closing). A set of triangular elements may be assembled to
produce an arbitrarily complex surface in three dimensions along
which any combination of displacement discontinuity or stress
drop boundary conditions may be specified. Finally, the BEM can
calculate fault slip distributions along the fault(s), stresses/strains
within the surrounding medium, and displacements within a half
or full-space problem. The half-space model is used to compute
stresses, strains, and displacements given the presence of a trac-
tion-free surface that represents the interface between the solid
earth and atmosphere, while the full-space model may be used to
approximate faulting processes deep within the crust.

In this study, we assume that displacements of stratigraphic
marker layers are produced by slip along a single, elliptically sha-
ped, frictionless planar fault underlying the monocline. Its elliptical
geometry approximates the three-dimensional extent of many
faults documented in the field (e.g., Willemse et al., 1996), while
B Deformed Model Configuration

fine the fault geometry and loading conditions in the Poly3D model. Model parameters
ration.
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ignoring geometric complexity that would be difficult to constrain
using displacements inferred from the ALSM data. Likewise, we
chose a planar fault geometry to mimic the geometry of older
reactivated basement faults (Davis, 1978; Huntoon and Sears, 1975;
Tindall and Davis, 1999). We acknowledge that the geometry of the
fault underlying this monocline is likely more complex than this
simple geometry; however, as we show below, even this simple
idealization of the underlying fault geometry produces displace-
ments that closely mimic those observed at Raplee Ridge mono-
cline. Others have proposed non-planar geometries for such faults
(e.g., Narr and Suppe, 1994); however, given the lack of additional
information to constrain the at-depth geometry of this fault, we
have chosen the simplest possible geometry that is harmonious
with available observations. Should additional data become avail-
able that better constrain the at-depth geometry of the Raplee
Ridge fault, it is straightforward to assimilate this information into
our modeling approach.

Given this idealization, the geometry and location of the fault
underlying the fold is defined by 9 parameters (Fig. 6): the down-
dip length of the fault (H), the along-strike width of the fault (W),
the depth of the fault below the surface (D), the map-view location
of the fault relative to the coordinate system of the model (xo,yo),
the dip of the fault (d), the strike of the fault (s), and the remote
conditions that drive motion along the fault. In this study, slip along
the fault results from a prescribed remote strain tensor (3xx, 3yy, 3xy),
which we assume does not vary with depth. We also set
3zz ¼ 3xz ¼ 3yz ¼ 0. We use this remote strain to compute the stresses
acting along the fault elements, and compute shear displacements
that result from this load. Dimensional analysis shows that Young’s
modulus is not an independent free parameter in our model, since
we prescribe remote strain boundary conditions and calculate only
surface displacements. If we were to use the stress state in the crust
during deformation as an additional constraint, Young’s modulus
would again enter the analysis. We prohibit opening or closing
perpendicular to the fault surface, as large amounts of opening or
fault-zone contraction are physically unrealistic at depths of
>1.5 km that likely typify the shallowest levels of slip along this
fault during late Mesozoic time (see below).

Once the fault geometry and loading conditions are specified,
the BEM calculates stresses, strains, and displacements at specified
points in the surrounding rock mass. These displacements can be
used to calculate the displacement of initially flat surfaces, such as
the stratigraphic marker layers currently exposed at Raplee Ridge.
We reconstructed the relative elevation and stratigraphic thickness
of each of the five surfaces modeled in this study using the
measured stratigraphy (Mynatt et al., 2007; Ziony, 1966) as well as
ALSM-based thickness measurements from flat-lying portions of
the stratigraphy exposed by downcutting of the San Juan River
(Mynatt et al., 2009). The likely depth of each of these units was
then inferred by noting that during late Mesozoic time, approxi-
mately 1.2 km of sedimentary rocks locally overlaid the section
under study (Hodgson, 1961). Thus, we were able to use this
information to estimate the depth of the originally flat-lying strata
at the time they were deformed.

As these units deformed, points originally located on the flat-
lying surfaces were displaced both vertically and horizontally. Thus,
the current location of the observed points along deflected layers do
not record their initial positions faithfully, especially in the case that
surface displacements are large. The BEM calculates the displace-
ment of a given point that is defined prior to deformation; however,
the displaced points measured using the ALSM dataset record each
point’s final, rather than initial position. We calculate the appro-
priate displacement at each (x,y) observation point on the deformed-
state surfaces using a two-step process. First, we calculate a regular
grid of displacements for each stratigraphic level that results from
a specified set of fault geometric and remote loading parameters.
These regularly spaced points are deformed into an irregularly
shaped mesh that represents the final configuration of each
deformed surface. This process results in a set of irregularly spaced
points on the deformed surface for which we know displacements
that are required to restore the points to a regular grid. Using the
deformed configuration, we use a linear interpolation to map these
displacement values to the (x,y) locations of each of the ALSM
measurements, and use these interpolated displacements to restore
each point to its initial location on the undeformed surface. In
a second step, we use identical input parameters with the BEM to
deform these initial state points into the final state to determine the
geometry of the deflected surface. This results in (x,y) coordinates of
the new deformed state points that match the locations of the
observations, and allows us to directly compare the elevation values
observed to those that are predicted by the BEM.

The above approach is appropriate for comparing observations
of the elevation of each deflected surface to those predicted by the
BEM. However, in some instances, such as our observations along
the Halgaito Tounge surface, the rotation of bedding rather than its
absolute elevation helps to constrain the fault geometry. In this
case, we employ a similar approach to that used for elevation
values; however, instead of calculating displacements at each of the
points, we instead calculate bedding-plane rotation. As before, we
first restore the observation locations on each of the surfaces for
which bedding rotations are measured to their original locations.
However, we use the initial-state locations to calculate rotation of
these points as they are deformed and compare these rotations to
observations. This was used to enforce areas of no rotation (e.g.,
flat-lying sediments as seen to the west of the fold).

Using these methods, we calculate the elevation values that
would be predicted by a given set of fault geometry and loading
parameters, and compare them to the observed elevation values for
each layer using the following misfit function:

WRSS¼Wz

Xn
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i �zpred
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szobs
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Xm
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j

srobs
j

3
52
1
CA (1)

where zobs are the ALSM-derived elevations of the deflected strata at
the (x,y) locations, szobs are the standard deviations of the elevation
measurements, zpred are the predicted elevations from the BEM, Wz is
the weight given to the misfit between measured and observed
elevation values, robs are the observed rotations (only flat-lying
portions of the Halgaito Tounge member are used in areas away from
the fold to constrain its extent), srobs are the standard deviations of
the rotation measurements, rpred are the predicted rotations from the
BEM, Wr is the weight given to the misfit between measured and
observed rotations, and WRSS is the weighted residual sum of
squares misfit function. As WRSS values decrease, the displacements
and rotations calculated by the BEM better match those observed.
Thus, we can find the best-fitting fault geometric and loading
parameters (hereafter referred to cumulatively as ‘‘model parame-
ters’’) by exploring various values of these model parameters,
calculating the misfit defined by Eq. (1), and identifying the model
parameters associated with the minimum value of the WRSS.

In addition to the best-fitting model parameters, we quantify the
uncertainty in these model estimates using a Bayesian sampling
method. In this approach, the model parameters are viewed as a joint
probability density function (pdf), the number of whose dimensions
corresponds to the number of model parameters. Such a joint pdf
may be used to determine both the best-fitting set of model
parameters and uncertainties within and covariation between
model parameters. These measures can be used to quantify the
uniqueness of the best-fitting solution, and to provide information
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about those combinations of model parameters that provide similar
fits to the observed data. We calculate this joint pdf of the model
parameters using Bayes’ Rule (Bayes, 1763):

PðmjxÞ ¼ PðxjmÞPðmÞXn

j¼1

P
�
x
��mj
�
P
�
mj
� (2)

where x is a vector consisting of the observations, m is a vector
consisting of the model parameters, P(mjx) is the joint pdf of the
model parameters given the observations, P(xjm) is the probability
of the data given the model parameters that can be derived from
a misfit function similar to Eq. (1), P(m) is a pdf that represents the
probability of occurrence of the model parameters in the absence of
any observations, and the denominator normalizes the cumulative
density of P(mjx) to unity (e.g., Bayes, 1763; Hilley and Young,
2008a,b). P(mjx) is often referred to as the posterior density while
P(m) is referred to as the prior density.

Bayes’ Rule is used to estimate P(mjx) in our analysis as follows.
First, a set of model parameters (m) is selected and from these
choices, predicted elevations and rotations are computed at all
points for which we have measured values of these quantities. The
probability of observing the data given the model parameters,
P(xjm) is computed using a modified version of Eq. (1) that takes
into account the number of degrees of freedom (DOF; defined as the
number of observations minus the number of model parameters) in
the model and the uncertainty associated with each elevation or
rotation observation (e.g., Pollitz, 2003, and references therein):

PðxjmÞ ¼ exp
�
�c2

r

�
(3a)

where

c2
r ¼

WRSS
DOF

(3b)

Bayes’ Rule also requires the definition of the prior density P(m).
This prior density represents the probability that a set of model
parameters occurs in the absence of any data to which the model is
compared. This prior density may represent some quantitative
a priori information about various aspects of the fault geometry or
loading conditions, or simply may be used to incorporate expert
opinion into the statistical analysis. For example, at a particular site,
subsurface seismic data may resolve a range of permissible fault
geometric parameters, such as fault strike and dip. This prior
information constrains the geometry of the fault in the absence of
any mechanical modeling or measurements of bedding displace-
ment. We cast these ranges in the fault geometric parameters in
terms of the probability of each value’s occurrence as a pdf. By
repeating this process for all of the model parameter values, we
construct the prior pdf P(m) that represents our prior knowledge of
reasonable ranges in fault geometry. In the case of the Raplee Ridge
monocline, we do not have additional prior information that
constrains the geometry of the underlying fault, and so we simply
specify a uniform probability of P(m) for all values of the model
parameters, m. Thus, Eq. (2) reduces to

PðmjxÞ ¼ PðxjmÞXn

j¼1

P
�
x
��mj
� (4)

By evaluating P(xjm) for all permissible values of m, we can use Eq.
(4) to compute the probability of occurrence of the model param-
eters, P(mjx).
The simple mechanical model used to compute P(mjx) requires
nine parameters to be specified, and hence, m consists of a nine-
dimensional parameter space. If each dimension of the parameter
space were discretized into only ten values, the number of eval-
uations of the BEM that would be required to compute P(mjx)
would be 109, or one billion different combinations of model
parameters. Such a large number of evaluations is computationally
infeasible given current computing technology. Indeed, it is this
limitation that has prevented the direct application of Bayes’ Rule
to all but the simplest problems with few model parameters. To
circumvent this difficulty, Markov–Chain Monte Carlo (MCMC)
methods have been developed that sample the underlying distri-
bution P(mjx) in a computationally efficient way to provide
a numerical approximation of this distribution. In these methods,
sparse sampling of P(mjx) is performed by the MCMC sampler,
which is designed to sample P(mjx) according to the pdf’s under-
lying probabilities. In this way, the portions with high P(mjx) can
be identified using only a small fraction of the evaluations that
would be required to exhaustively explore the entire parameter
space.

The sampler employed in this study is the Metropolis–Hastings
MCMC method (Metropolis et al., 1953). In this algorithm, The
Metropolis–Hastings sampler uses a selection–rejection criterion
to guide sampling through the parameter space such that P(mjx) is
approximated. We first use an initial, randomly selected choice for
mdthe exact choice for this starting point becomes less important
as the simulation proceeds and the sampler instead selects points
based on the underlying distribution P(mjx). After this choice has
been made, a set of random numbers is drawn from the interval
[�1,1], one for each dimension of m. These numbers are then
scaled by a specified, arbitrary constant and added to the previous
choices for the initial model parameters, moving the samples
a random distance through the parameter space, m. This is the
selection process. Next, this new set of samples may be either
accepted or rejected. If accepted, the new samples are treated as
a new starting point for the sampler and the selection process is
repeated. If the samples are rejected, the previous values of the
model parameters are used to select a new set of samples.
Samples are accepted or rejected based on the probability of their
occurrence relative to the probability of occurrence of the
previous set of samples. First, the probability of occurrence for
both the previous set of samples and the current selection of
samples is computed using Bayes’ Rule (Eq. (4)). We define the
probability of the first sample as P1, whereas the probability of the
second sample is denoted as P2. In the case that P2 > P1, the new
set of samples is always accepted. However, if P2 < P1, the ratio of
these two probabilities is computed and compared to a random
number drawn along the interval [0,1]. If the ratio exceeds this
random number the sample set is accepted, otherwise it is
rejected. Thus, the Metropolis–Hasting sampler explores the
parameter space m, is guided towards higher values of P(mjx) in
Eq. (4), and the frequency of the model parameters chosen by the
sampler approximates the posterior density P(mjx). Initially, the
values selected by the sampler will depend on the arbitrary initial
choices for the model parameters at the beginning of sampling;
however, as sampling proceeds, the memory of these initial
choices tends to fade and the frequency of m selected by the
sampler will reflect P(mjx). Thus, a ‘‘burn-in’’ period of sampling is
used to erase the memory of the arbitrary sampling starting
location in the parameter space, and only samples drawn after this
burn-in are used when computing P(mjx). In our study, we allow
a burn-in period of 50,000 samples to allow sample choices to
become independent of the initial choices for the model param-
eters, and collect 100,000 samples to approximate the posterior
pdf, P(mjx).
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4.2. Modeling Raplee Ridge monocline

We used the BEM to calculate bedding-plane displacements due
to slip along a blind reverse fault for two scenarios–one in which
only the most well-exposed bedding surface (McKim surface) was
used to compare observed and modeled fold geometry, and
a second in which all mapped bedding surfaces were used to define
the fold’s geometry (Fig. 6). The first of these two scenarios is
similar to the inversion presented in Mynatt et al. (2007), except
that in this study, the misfit is normalized by the number of degrees
of freedom in the model. This difference does not impact the values
of the model parameters that best match the observed elevations;
however, the uncertainties associated with each model parameter
tend to be larger (and likely more realistic) than those presented in
Mynatt et al. (2007).

Elevation estimates along the mapped surfaces are available
every square meter using the ALSM data. For expediency, we
consider only a subset of points separated by a minimum distance
of 50 m when inverting for the fold’s geometry. This reduces the
number of computations necessary by a factor of w2000. The
Metropolis–Hastings inversions described above require several
weeks to w1.5 months of computation time on a dual 1.6 GHz Mac
OS XServe server using this low-resolution dataset, and so inver-
sions that use the full-resolution data would be infeasible given
today’s computing technology.

The mapped surfaces are not exposed within the forelimb
syncline of the fold. Thus, the observations of the mapped bedding
surfaces permit a fold geometry in which layers continue to dip
westward at great distances west of the extent of exposure of these
surfaces (Fig. 2b). However, surfaces exposed along unmapped
higher bedding surfaces within the stratigraphic section show sub-
horizontal orientations, indicating that the mapped units share
a similar orientation in the subsurface. To account for these obser-
vations, we used two different approaches. In the case of the models
that considered only the observed geometry of the McKim surface,
we assumed that the stratigraphic thickness between the exposed
units and the McKim bedding-plane surface within the fold’s eastern
portion was similar to that observed in locations far from the fold-
related deformation. This thickness was used to infer the depth at
which the McKim surface should be located in the subsurface. These
inferred (x,y,z) subsurface locations were used when inverting for
the fold’s geometry. In the case where we considered all mapped
layers in the inversion, we instead used a rotation constraint within
the Halgaito Tongue member, which is well exposed throughout the
area surrounding the fold. In this way, rather than assign subsurface
locations for which the (x,y,z) locations of each of the bedding planes
is located, we instead required areas at the stratigraphic level of the
HalgaitoTongue member to experience no rotation (right-hand term
in Eq. (1)). This has a similar effect of ensuring that the geometry of
the fold is finite in areas to its west.

5. Results

We first present the results of our fold inversion when only
comparing elevation values measured along the McKim surface to
elevations of the deflected surface that were predicted by the BEM.
The best-fit model (Fig. 7) shows that the observed fold geometry is
most consistent with a fault whose width is almost three times its
down-dip length (best-fitting model parameter values shown as italic
numbers in each model parameter panel of Fig. 8). In addition, the
forelimb dips indicate that the tip-line of the fault is likely only several
hundred meters below the current surface in the fold’s center. The
strike of the underlying fault is approximately 3� east of north,
consistent with the roughly N-S trend of the observed topography. In
addition, the fault underneath the fold is inferred to dip w47� to the
east. Poisson’s ratio of the sediments overlying the fold inferred by the
model (0.28) is close to that typically assumed for crustal rocks (Jaeger
and Cook,1969). Finally, the regional contraction in the E-W direction
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(3xx) is expected to be w3 times that in the N-S direction (3yy), and is
w20 times larger than the regional shear strain (3xy). The absolute
value of E-W strain (3xx) for the best-fitting model was 0.43.

The best-fitting model produced surface elevations consistent
with those measured (Fig. 7a). The quality of the fit is seen on
a graph of observed versus predicted values (Fig. 7b) at points
where elevations were extracted from the ALSM data (locations of
points shown in Fig. 7a). The inferred subsurface points along the
western portion of the fold were assigned a constant value, which
appear as a vertical line of points at low elevations in Fig. 7b. In
contrast, calculated displacements vary smoothly across these
points, creating a mismatch between the inferred subsurface
elevations and those predicted by the BEM. The residuals (defined
as the modeled elevations minus the observed elevations) show
approximately zero mean. In addition, the model systematically
underestimated points at the crest of the fold, which skewed
residuals negatively (Fig. 7c).

The best-fitting model yielded a root-mean-squared error of
16.1 m. This value is significantly greater than the uncertainty in the
elevation observations, indicating the mismatch between eleva-
tions predicted by the linear elastic half-space model and those
observed is far larger than the uncertainties in elevation that we
measured using the ALSM. Indeed, given the high accuracy of the
ALSM elevations (< 2–4 m), it is difficult to conceive of an idealized
model (of any rheology) whose average misfit might be on the
order of, or less than this value. Thus, the high accuracy of our data
relative to that expected from our idealized model forces us to
conceptualize sobs in Eq. (1) as the inaccuracy that is produced by
the strict model assumptions of the BEM. In this context, we adjust
sobs in Eq. (1) to require that cr

2 ¼ 1 for the best-fitting set of model
parameters. As we see below, this choice for sobs increases the
variance of the model parameters to a range that takes into account
the uncertainty of using a linear elastic model to calculate
displacements in a material that might be better characterized by
a more complicated, anisotropic, and/or spatially variable rheology
(Sanz et al., 2007; Sanz et al., 2008).

We used the Metropolis–Hastings MCMC method to calculate
the posterior probability, P(mjx), of each of the model parameters
for which the inversion was performed (Fig. 8). The joint posterior
pdf is a nine-dimensional probability distribution, with each of its
axes representing the nine model parameters required for the
calculation of bedding-plane displacements. Such a distribution is
difficult to visualize, and so we present the marginal posterior pdfs
by collapsing all dimensions of the joint pdf excepting that of the
model parameter of interest onto the dimension of this model
parameter (Fig. 8). The resulting pdf shows the variability that
characterizes each model parameter, but does not capture the
covariation of the different model parameters with one another. For
each of the model parameters, we report the value for the best-
fitting scenario as italic numbers, the mean of the simulated
posterior pdfs as bold numbers, and the 95% range in the simulated
model parameter pdfs in parentheses in each of the panels.

The simulations reveal substantial variation in the model
parameters such that a variety of their values may produce similarly
good fits to the observed elevations (Fig. 8). For many of the model
parameters, mean values of the simulation are similar to the best-
fitting values, although agreement is substantially less for those
distributions that are highly skewed or uncertain (such as n, 3xx/3xy

and 3xx/3yy). Nonetheless, the model places broad bounds on fault
geometries that may plausibly create the observed displacements. In
some cases relatively large values of Poisson’s ratio (0.23–0.49) are
allowed, which implies that the single-layer models favor a rheology
that undergoes minimum volume change during deformation.
Considering the range of values produced by the simulation, the fault
tip at the center of the fold is expected to be only a few kilometers
below the surface at the time of deformation, and is currently



Fig. 9. Observed (filled circles) and predicted (shaded background) elevations of the McKim, Goodrich, Shafer, Mendenhall, and Unnamed surfaces produced by movement along
the best-fitting modeled fault geometry that slips in response to the best-fitting remote loading conditions. Color and map-view scale are identical between plots. The inferred
depth below the surface of each of these layers at the time of deformation is noted in each of the panels.
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predicted to be only several hundred meters below the level of
exposure. The down-dip extent of the modeled fault is between 4.5–
10.0 km, and the along-strike width of the fault is 13.0–23.5 km.

Next, we performed our inversions using all five of the mapped
layers that define the geometry of the Raplee Ridge monocline. The
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best-fitting multilayer model elevations were similar to those
observed (Figs. 9 and 10). The extensive exposure of the McKim,
Goodrich, and Shafer surfaces causes the model to most accurately
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along these surfaces are fewer, and consequently their weight is less
in the inversion. This effect is most pronounced for the Mendenhall
and Unnamed surfaces, both of which show larger misfit than their
counterparts higher in the stratigraphic section (Figs. 9 and 10).
When comparing observed versus predicted elevations for the
multilayer models (Fig. 10), a slight but systematic underestimation
of elevations within the McKim and Goodrich surfaces are observed
for elevations of w1600 m. These points flank the upper-most crest
of the fold along the McKim surface, and their misfit arises because
the fold is more cylindrical at its crest than might be expected for the
simple elliptical fault geometry assumed in this study. Nonetheless,
the best-fitting model geometry produces generally unbiased esti-
mates of the elevations across all surfaces (Fig. 10): model residuals
for the McKim, Goodrich, Shafer, Mendenhall, and Unnamed surface
have means of �1.0, 1.2, �5.3, 1.0, and 4.6 m, respectively, with
a mean residual of 7.6 � 10�15 m when considering all points from all
layers. The variation within residuals was similar across the McKim,
Goodrich, and Shafer surfaces, with standard deviations equaling
16.9, 15.9 and 16.8 m, respectively. However, the fewer points
extracted along the less-well-exposed Mendenhall and Unnamed
surfaces resulted in higher standard deviations of 25.0 and 20.7 m,
respectively.
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The best-fitting model parameters deduced when using all of
the mapped layers (Figs. 9–11) shared affinity to those derived
using only the McKim surface (Figs. 7 and 8). The dimensions of the
fold were similar, although the underlying fault was slightly wider
in the along-strike direction when using all mapped layers (Fig. 11,
italic numbers in each model parameter panel). In addition, the
best-fitting model that uses all of the layers favors a deeper fault
tip-line at the center of the fold in comparison to the single-layer
models. The root-mean-squared error for the best-fitting model
was 18.1 m, slightly larger than the single-layer model.

The joint posterior distribution of model parameters estimated
using the Metropolis–Hasting sampler permitted sets of fault
geometries and loading conditions that were generally consistent
with those derived from the single-layer models (Fig. 11). However,
inversions that utilized observations from multiple stratigraphic
layers generally tended to permit a wider range of model param-
eters than did single-layer inversions (Figs. 8 and 11). Mean values
of the calculated posterior pdfs were similar to those calculated
using the best-fitting model. As with the best-fitting modeled fault
depth, the range of fault depths allowed by the multilayer inversion
tended to be deeper than those predicted using only data from the
McKim surface. Unlike single-layer model results, values of
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Poisson’s ratio permitted by the multilayer models spanned the
range from 0.03–0.48, indicating that this parameter may not be
well resolved by such an inversion. Nonetheless, both sets of
models predict that the underlying fault dips steeply to the east. In
addition, the down-dip extent of the fault is similar to the single-
layer model (5.5–13.8 km), while the along-strike width of the fault
is inferred to be between 13.2–29.3 km (Fig. 11).

6. Discussion

This study builds on our previous work, in which we used the
elevations extracted from the McKim limestone in combination
with the BEM to interpolate the geometry of this surface and infer
the fault geometry and regional strain. The single-layer models
created as part of the current study are similar to those reported in
our previous work with two important differences. First, previous
work fixed Poisson’s ratio to a value of 0.25 when determining the
best-fitting and posterior probability densities of the model
parameters, while in the current study, we treat this ratio as a free
parameter in the inversion. By allowing Poisson’s ratio to change,
the down-dip height of the fault decreased, while the depth to its
upper edge increased. In addition, the larger best-fitting value for
Poisson’s ratio is associated with a more steeply dipping fault.
Second, previous work did not consider the number of degrees of
freedom when estimating P(xjm). This had the effect of causing the
model parameter posterior distributions to have less variance than
those determined in this study. Given the large uncertainties
associated with the model itself (discussed below), the higher
variance distributions reported in this study likely provide a more
realistic estimate of the uncertainties in model parameters than
those reported previously.

In addition to expanding the inversion methodology to accom-
modate observations of bedding rotations and displacements of
multiple layers, we explored the impact that spatial resolution and
precision of different sources of elevation data might have on the
inversions. The standard deviation of the difference between the
NED-10 and NED-30 elevations when compared to the ALSM data
was found to be w25% of the RMS error produced by the best-fitting
modeled elevations. Thus, given the uncertainties in applying such
an idealized model to a complex fold, the NED-10 or NED-30 data-
sets would have likely been adequate for this analysis. We did find
the ALSM data to be invaluable when identifying the extent of the
bedding surfaces in the elevation data and the field. In fact, many
outcrops that define the fold’s geometry are not visible when using
the NED-10 or NED-30 datasets (Fig. 3). Thus, while the precise
ALSM mapping may not have increased the precision of elevation
measurements used as input for inversions, it aided in the identi-
fication of those areas from which such elevation measurements
were extracted.

The methods presented here provide a new, mechanically based
way of interpolating the geometry of three-dimensional fault-
related folds and imaging the geometry of the underlying faults. As
such, the results must be viewed in the context of the simplifying
assumptions of the mechanical models upon which the approach is
based. In particular, the BEM idealizes the crust as a homogeneous
linear elastic half-space into which elements that may accommo-
date slip and opening are embedded. In reality, the rocks currently
exposed within the Raplee monocline likely deformed anisotropi-
cally, elastically or visco-elastically. In addition, the study infers the
geometry of a fault that has not been imaged in the subsurface.
Importantly, some of the geometric parameters of the fault are
poorly defined, especially the down-dip extent of the fault (fault
height), which results from the narrow cross-strike aperture of the
topographic swath. Thus, our inversion results indicate that the
deep geometry of the structure is poorly imaged, and as such,
geometries that serve as a deep backthrust to the Comb Ridge fault,
or a ramp-flat geometry that transfers horizontal slip into the fold
along a decollement at some depth are certainly possible. The
geometry of the fault was chosen for simplicity: alternative deeper
geometries would likely be permitted by our model, but their
geometric properties would be similarly poorly defined as the
bottom edge of the elliptical fault used in this study. Given that each
of these more complicated geometries would require far more, and
far more poorly defined, free parameters, we view the results from
the elliptical fault geometry as realistic to first-order, but
acknowledge that there is little that can be said with confidence
about the deeper aspects of the fault’s geometry based on the
limited surface observations available.

In spite of these simplifying assumptions, the method predicts
fold shapes consistent with elevations of specific bedding surfaces
observed using the ALSM data. In addition, the original work of
Kelley (1955) on monoclines of the Colorado Plateau posits the
existence of a slight component of left-lateral shear across the Comb
Ridge structure. This sense-of-shear is consistent with the slight
sinistral shear produced by the inverted fault strike and remote
strain conditions. Nonetheless, to validate such an approach, similar
analyses should be performed in areas where subsurface imaging
allows comparison of these imaged geometries with those modeled
using surface data.

The success of the BEM in accurately depicting the geometry of
Raplee Ridge monocline indicates either that the approximation of
linear elasticity serves as an adequate characterization of the
rheology of the folded materials, or that different rheological prop-
erties may produce similar observed fold geometries by allowing the
underlying geometry of the slipping fault to change as well. While
the Metropolis-Hastings sampler provides estimates of the uncer-
tainties within model parameters that arise from the characteriza-
tion of the uncertainties in the data, the uncertainties associated
with the inappropriateness of the simplified rheology in our model is
not captured. In the future, numerical experiments using finite
element models that can consider more complicated rheologies may
be used to assess the trade-offs between the loading conditions
(represented by the far-field strain conditions and the underlying
fault geometry), rheology, and observed surface displacements. The
results from a suite of experiments employing different rheologies
and analyzed using the methods presented in this work may be
compared with one another to assess the degree of uncertainty that
is associated with the choice of the rheology of the folded material.
This choice may impact the parameters such as fault geometry that
are inferred by this approach, and so by having independent esti-
mates of these values, it might be possible to discern the most
appropriate rheological model for these types of folds.

7. Conclusions

We present a method that uses the elevations of stratigraphic
marker layers exposed within fault-related folds to infer the
underlying fault geometry, loading conditions, and Poisson’s ratio
of the folded material, assuming that deformation is due to the
release of stress along a frictionless elliptical fault embedded in
a homogeneous linear elastic half-space. This method may be
applied to situations in which a single bedding surface is exposed,
or multiple surfaces have been deformed and exhumed. In addition
to bedding-plane elevations, the orientation of units at various
locations in a particular part of the stratigraphic section may be
used to further constrain the geometry of the fold and underlying
fault. Using a Bayesian Markov–Chain Monte Carlo method, we
determined the fault geometry, loading conditions, and elastic
parameters that best explain the observed surface displacements,
as well as the variation within and covariation between these
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model parameters. This allowed us to understand the degree to
which the data constrain model parameters and the various
combinations of model parameters that may produce the observed
surface displacements.

We applied these methods to the Raplee Ridge monocline,
located in southeastern Utah, where ALSM data define the geom-
etry of exposed bedding surfaces. While we found that the reso-
lution and precision of the ALSM data are unnecessary for inferring
the fault geometry and loading conditions using our approach,
these data were necessary for the mapping of the spatial distribu-
tion of surface outcrops. Both single-layer and multilayer inversions
agree remarkably well with observations, and image a fault that is
broadly constrained to be w4.5–14 km in down-dip height, 13–
30 km in along-strike width, with a tip-line 2.0–9.5 km below the
surface at the time of deformation. Poisson’s ratio was not well
resolved by the inversion. The consistency of the simplified (and
likely unrealistic) rheology of the folded material with the observed
geometry might suggest that surface displacements may reveal
little about the rheology of the folded rock when viewed in isola-
tion from factors such as fault geometry and loading conditions.
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